NAME: INAYAT ARSHAD
SUBMITTED TO: DR IRFAN HAMEED
IAD SEMESTER PROJECT
PROBLEM 3

pg. 1

(Problem 3)
Develop test cases for all security features and prepare a report about testing security features.
(Ans)
The following test cases are used for the security features | have applied:

1)Https redirection

To enhance the security of my ASP.NET web application, | implemented HTTPS redirection to
ensure that all client-server communication is encrypted. Firstly , my site was not secured due to
http only , no SSL , the URL was http://labsiad.somee.com but after that | bought a free
certificate order from some ,

< c 25 somee.com/doka/DOU/SSLCertificates/FreeCertificates a ¥ }

SOMEE.com
“ (%) Dashboard .../ SSL Certificates
(] Support tickets List of certificates Free certificate orders Certificate signing requests
& Profile
[® Billing D Common name Organization Town State Country Curment certificate Status
@ mvoices FSOIDS5729 labsiadsomee.com Individual Islamabad Fedral PK CRTID83329 Completed. Renew manually after 7/12/2025 [orenew | [3

3 Payment methods

2 Subscriptions I CREATE ORDER FOR FREE CERTIFICATE ‘

~ [EQ SSL Certificates
& Free certificate orders
[EJ Certificate signing requests
@ Virtual servers
& Websites
“ (@ MssaQL
@ Databases
& Database Logins
83 Mail domains

© Copyright 2025 Doka ma

https://somee.com/doka/DOU/Billing/BillingOptig

pg. 2

http://labsiad.somee.com/

And then | was able to , use Https and system got secured , now my URL is

https://www.labsiad.somee.com/ and now on clicking the previous URL | get
&€ > C 25 https://www.labsiad.somee.com v

Application Development

Lab Exercises & Resources By Inayat Arshad

BS-22-1B-105732

DESCRIPTION RESOURCES

Hosted Windows Virtual Server. 2.5GHz CPU, 2GB RAM, 60GB SSD. Try it now for $1!

Web hosting by Somee.com

=F Q Search m H + @ C? D wp W@

SSL (Secure Sockets Layer) provides a secure, encrypted connection between a user’s browser
and the web server, ensuring that all data transmitted—such as login credentials, personal details,
or payment information—is protected from interception or tampering by hackers. It prevents
man-in-the-middle attacks, ensures data integrity, and builds user trust by displaying the
padlock icon and "https://" in the address bar. Additionally, SSL is essential for SEO rankings,
as search engines like Google prioritize secure websites.

2) Secure Password Storage
When a user types a password like inayat123 during login:
1. Login.aspx.vb hashes that input using SHA-256.
2. The hashed version (e.g., 25f9e794323b453885f5181f1b624d0b) is compared with the
stored hashed password in the database.
3. If it matches, login is successful.
You just type the plain password (inayat123) as usual — no change in user behavior.

pg. 3

https://www.labsiad.somee.com/

Database has hashed passwords like

< > C 23 somee.com/doka/DOU/MSSQL/MsSqlDatabaseConsole/48782117?handler=Query&h1h2h3=88ccdb74787905f21e1b79685b57fdd2 Q & b .
28 [All Bookmark

Enter your SQL query or T-SQL batch. It will be executed on database: movierentalsystem

select * from customer_t EXECUTE T-sQL

Set 1. Total rows: 9

customer_id customer_name phone membership password

1 John Smith 555-123-4567 Gold 93f79668a4fbb52632¢10f092a87ecId354276b17372609¢51d60b13820435

2 Emily Johnson 555-234-5678 Silver €180d909a02e5140d63622d46¢1d0231382b59c31ab1f7a16bde833380c7bc1b

3 Michael Brown 555-345-6789 Platinum 4adb3fa5b116bb0935e6d4addf483e4e5767bbeb24774844a3c7de0686a5eaab

4 Sarah Davis 555-456-7890 Basic @2 160cE 099308f4178b8be d598e72bdefcd0e1d48

5 David Wilson 555-567-8901 Gold 4dbacd7934be3fdf71df2946e9846f573f965724cfbbf54b686a00c43d18f02f

6 inayat arshad 575-223-4569 Gold 4b951d249a2dc378fb196214cc9b30d8c9addbl84821434070a230404€298328
saad ali 575-223-2222 Platinum 8ed3f6ad685b959ead7022518e1a{76cd8168e8ecTccddaled4018e82223f8

16 inayat arshad 575-223-4569 Platinum 03ac674216f3e15¢761ee1a5¢255f067953623¢8b388b4459e13f978d7c846f4

17 abdurehman 575-223-4229 Silver 89d9837ccbOed4149bcfccff1acef97efdafof4d4e8a757308b800566126ef92

2 files has been added

HashPasswords.aspx

<%@ Page Language="VB" AutoEventWireup="false" CodeFile="HashPasswords.aspx.vb"
Inherits="HashPasswords" %>

<!DOCTYPE html>
<html>
<head runat="server">
<title>Hash Passwords Utility</title>
</head>
<body>
<form id="form1" runat="server">
<div>
<asp:Label ID="IblIStatus" runat="server" Text="Hashing passwords... Please
wait."></asp:Label>
</div>
</form>
</body>
</htmi>

HashPasswords.aspx.vb
Imports System

Imports System.Data.SqlClient
Imports System.Security.Cryptography
Imports System.Text

Partial Class HashPasswords
Inherits System.Web.Ul.Page

pg. 4

Dim connStr As String = "workstation id=movierentalsystem.mssgl.somee.com;packet size=4096;user
id=inayat_arshad_SQLLogin_1;pwd=ghlgsg2nl9;data
source=movierentalsystem.mssql.somee.com;persist security info=False;initial
catalog=movierentalsystem; TrustServerCertificate=True"

Protected Sub Page_Load(sender As Object, e As EventArgs) Handles Me.Load
Try
Dim customersUpdated As Integer = 0

Using conn As New SglConnection(connStr)
conn.Open()

" Select all customers

Dim selectCmd As New SqlCommand("SELECT customer _id, password FROM customer_t",
conn)

Dim reader As SglDataReader = selectCmd.ExecuteReader()

Dim customersToUpdate As New List(Of KeyValuePair(Of Integer, String))()

While reader.Read()
Dim customerld As Integer = Convert.Tolnt32(reader("customer_id"))
Dim plainPassword As String = reader("password").ToString()

' Check if already hashed (hashes are usually 64 characters long in hex)
If plainPassword.Length <> 64 Then
Dim hashedPassword As String = HashPassword(plainPassword)
customersToUpdate.Add(New KeyValuePair(Of Integer, String)(customerld,
hashedPassword))
End If
End While
reader.Close()

' Update passwords

For Each customer In customersToUpdate
Dim updateCmd As New SglCommand("UPDATE customer_t SET password = @hashed

WHERE customer_id = @id", conn)

updateCmd.Parameters.AddWithValue("@hashed", customer.Value)
updateCmd.Parameters.AddWithValue("@id", customer.Key)
updateCmd.ExecuteNonQuery()
customersUpdated += 1

Next

IblStatus. Text = "Passwords hashed successfully for {customersUpdated} customer(s). Please
delete this page now."
End Using

Catch ex As Exception
IbIStatus.Text = " Error: " & ex.Message
End Try
End Sub

pg. 5

Private Function HashPassword(password As String) As String
Using sha256 As SHA256 = SHA256.Create()
Dim bytes As Byte() = Encoding.UTF8.GetBytes(password)
Dim hash As Byte() = sha256.ComputeHash(bytes)
Dim sb As New StringBuilder()
For Each b As Byte In hash
sh.Append(b.ToString(*'x2"))
Next
Return sb.ToString()
End Using
End Function
End Class

login.aspx.vb

Imports System

Imports System.Data.SqlClient
Imports System.Security.Cryptography
Imports System.Text

Partial Class Login
Inherits System.Web.Ul.Page

Dim connStr As String = "workstation id=movierentalsystem.mssgl.somee.com;packet size=4096;user
id=inayat_arshad_SQLLogin_1;pwd=ghlgsg2nl9;data
source=movierentalsystem.mssql.somee.com;persist security info=False;initial
catalog=movierentalsystem; TrustServerCertificate=True"

Protected Sub btnLogin_Click(sender As Object, e As EventArgs)
If String.IsNullOrWhiteSpace(txtUsername.Text) OrElse
String.IsNullOrWhiteSpace(txtPassword.Text) Then
IbIMessage.Text = "Username and Password are required."
Return
End If

Dim hashedInputPassword As String = HashPassword(txtPassword.Text)

Using conn As New SglConnection(connStr)
conn.Open()

Dim cmd As New SglCommand("SELECT customer_id, customer_name FROM customer _t
WHERE customer_name = @name AND password = @password", conn)

cmd.Parameters.AddWithValue("@name", txtUsername.Text)

cmd.Parameters.AddWithValue("@password", hashedinputPassword)

Dim reader As SqlDataReader = cmd.ExecuteReader()

If reader.Read() Then
Session(""username™) = reader(*customer_name").ToString()
Session(""customer_id") = reader("customer_id").ToString()
Response.Redirect(""dashboard.aspx™)

Else

pg. 6

IbIMessage. Text = "Invalid username or password."
End If
reader.Close()
End Using
End Sub

Private Function HashPassword(password As String) As String
Using sha256 As SHA256 = SHA256.Create()
Dim bytes As Byte() = Encoding.UTF8.GetBytes(password)
Dim hash As Byte() = sha256.ComputeHash(bytes)
Dim sb As New StringBuilder()
For Each b As Byte In hash
sb.Append(b.ToString(*'x2"))
Next
Return sbh.ToString()
End Using
End Function

End Class
After adding HashPasswords.aspx ,I Deployed and visit
https://labsiad.somee.com/HashPasswords.aspx once, It will hash all non-hashed passwords in
the customer_t table. After confirming login works:

Delete the page immediately
Functionality:

In my web application, I implemented password hashing to enhance the security of the login
system. Specifically, 1 used the SHA-256 hashing algorithm in VB.NET to hash the admin
password before verifying it during login.

This had the following functions and advantages:

e Prevented plain-text password storage: Instead of storing or comparing passwords in
plain text, | used a hashing function to transform the password into a fixed-length,
irreversible string.

« Improved security in case of data breaches: Even if someone gains unauthorized
access to the application or database, they won’t be able to see the actual password.

e Resisted reverse-engineering: The one-way nature of the SHA-256 algorithm ensures
that it's practically impossible to retrieve the original password from the hashed version.

e Protected against common attacks: Hashing helps defend against brute force and
rainbow table attacks, especially when used with additional techniques like salting
(which can be added later for even stronger protection).

By doing this, I ensured that sensitive login information, like admin credentials, is handled in a
secure and industry-standard way.

3) Role-Based Access Control (RBAC)

Purpose:

RBAC was implemented to ensure that users (Admin and Customers) can only access
functionality appropriate to their roles, thereby enforcing security, personalization, and access
management.

How I Implemented RBAC

pg. 7

| implemented Role-Based Access Control (RBAC) by clearly separating the authentication
process and access logic for two types of users: Admin and Customer. Each role has a distinct
login system, session control, and access to role-specific pages.
On the welcome page, users are prompted to select their role:
e Clicking Admin redirects the user to AdminLogin.aspx
e Clicking Customer redirects the user to Login.aspx (customer login)
This initial choice ensures role-specific routing from the very beginning.
2. Admin Authentication and Access Control
a. AdminLogin.aspx.vb
e The admin credentials are hardcoded for simplicity (admin / admin123).
e The password is hashed using SHA-256 using a GetHashedPassword() function.
e Upon successful login, a session variable is set:
Session(*admin™) = "true"
e The admin is redirected to AdminDashboard.aspx.
b. AdminDashboard.aspx
Admin-only features:
o View all customers
o Manage movies
o Manage subscriptions
o Logout
e Access to AdminDashboard.aspx and its features is protected using a session check
If Session(""admin™) Is Nothing OrElse Session(*admin™) <> "true" Then
Response.Redirect("AccessDenied.aspx')
End If
3. Customer Authentication and Access Control
a. Login.aspx.vb
o Customers enter their username and password.
e The password is hashed using SHA-256 and validated against the database (customer _t
table).
e Upon successful login:
Session(*'username™) = reader(*customer_name").ToString()
Session(*"customer_id") = reader("customer_id").ToString()

e The user is redirected to dashboard.aspx (customer dashboard).
b. CustomerDashboard.aspx
e Only customer features are shown:
o Browse movies
o Rent movies
o Review payment history
o Customer pages check for a valid session before allowing access:
If Session(""customer_id™) Is Nothing Then
Response.Redirect("AccessDenied.aspx™)
End If
4. Role Isolation
e Admin and Customer dashboards are completely isolated in both logic and navigation.

pg. 8

e Users cannot simply change the URL and access another role’s dashboard.
o For example, a customer trying to access AdminDashboard.aspx without the
correct session will be redirected.
o Logout pages clear session data to prevent reuse of old sessions.
Outcome
This role-based access system in my Movie Rental System:
o Prevents customers from accessing admin-only functionalities such as managing movies
or viewing all customers.
o Provides a personalized experience where admins can manage data and customers can
only browse, rent movies, and view their payment history.
o Keeps the application secure and organized by clearly separating admin operations from
customer activities, both in logic and page access.

4) SQL Injection Prevention

In the implementation of the login functionality, SQL Injection Prevention has been effectively
ensured using parameterized SQL queries. Rather than directly concatenating user inputs into
SQL queries, the system employs parameterized queries to safely pass user input as data, not
executable code. For example, in the btnLogin_Click event handler, the query to validate user
credentials is written as:

Imports System

Imports System.Data.SqlClient

Imports System.Security.Cryptography

Imports System.Text

Partial Class Login
Inherits System.Web.Ul.Page

Dim connStr As String = "workstation id=movierentalsystem.mssgl.somee.com;packet size=4096;user
id=inayat_arshad_SQLLogin_1;pwd=ghlgsg2nl9;data
source=movierentalsystem.mssgl.somee.com;persist security info=False;initial
catalog=movierentalsystem; TrustServerCertificate=True"

Protected Sub btnLogin_Click(sender As Object, e As EventArgs)
If String.IsNullOrWhiteSpace(txtUsername.Text) OrElse
String.IsNullOrWhiteSpace(txtPassword.Text) Then
IbIMessage.Text = "Username and Password are required."
Return
End If

Dim hashedInputPassword As String = HashPassword(txtPassword.Text)

Using conn As New SglConnection(connStr)
conn.Open()

Dim cmd As New SqlCommand("SELECT customer_id, customer_name FROM customer _t
WHERE customer_name = @name AND password = @password", conn)

cmd.Parameters.AddWithValue("@name", txtUsername.Text)

cmd.Parameters.AddWithValue("@password", hashedinputPassword)

pg. 9

Dim reader As SqlDataReader = cmd.ExecuteReader()

If reader.Read() Then
Session(""username™) = reader("'customer_name").ToString()
Session("customer_id") = reader("customer_id").ToString()
Response.Redirect(""dashboard.aspx™)

Else
IbIMessage. Text = "Invalid username or password."

End If

reader.Close()

End Using
End Sub

Private Function HashPassword(password As String) As String
Using sha256 As SHA256 = SHA256.Create()
Dim bytes As Byte() = Encoding.UTF8.GetBytes(password)
Dim hash As Byte() = sha256.ComputeHash(bytes)
Dim sb As New StringBuilder()
For Each b As Byte In hash
sb.Append(b.ToString(*'x2"))
Next
Return sh.ToString()
End Using
End Function
End Class
Here, the user input for the username and password fields is bound to the SQL parameters
@name and @password, preventing any malicious SQL code from being injected. The
parameters are safely added to the SQL command using cmd.Parameters.AddWithValue(),
ensuring that the values are treated as data rather than part of the SQL syntax. This approach
eliminates the risk of SQL injection attacks, as user input cannot manipulate the query logic or
access unauthorized data. By adopting parameterized queries, the system robustly secures the
application from SQL injection vulnerabilities and ensures secure database interactions.

5) Session Management Implementation
Purpose:
The goal of session management is to ensure that users remain securely logged in during their
session and to prevent attackers from hijacking active sessions. Proper session management
includes using secure cookies, session timeouts, and proper session invalidation upon logout.
Setting Secure, HTTP-Only Cookies:
o After a successful login, the session is established, and the session cookie
(ASP.NET_Sessionld) is set with two critical attributes:
o HttpOnly: Ensures that the cookie is not accessible via client-side JavaScript,
thus preventing cross-site scripting (XSS) attacks.
o Secure: Ensures that the cookie is only sent over HTTPS, preventing it from
being transmitted over insecure HTTP connections.
e This is implemented in the btnLogin_Click method in both AdminLogin.aspx.vb and
Login.aspx.vb files:
If Response.Cookies("ASP.NET_Sessionld™) IsNot Nothing Then

pg. 10

Response.Cookies("ASP.NET_Sessionld™).HttpOnly = True
Response.Cookies("ASP.NET_Sessionld").Secure = True
End If
Session Timeout:

o By default, ASP.NET session management has a built-in session timeout feature that
invalidates the session after a predefined period of inactivity. However, you can adjust
the timeout value in the Web.config file to suit your security needs. For example:

<configuration>

<system.web>

<sessionState timeout="20" /> <!-- Session timeout in minutes -->

</system.web>
</configuration>
This ensures that if a user does not interact with the application for 20 minutes, the session will
be automatically invalidated.
Session Invalidation on Logout:

e When the user logs out, the session is invalidated using the Session.Abandon() method,

which clears the session data and prevents unauthorized access to sensitive information.
For example, in a logout page, i would implement:
Session.Abandon()
Response.Redirect("Login.aspx™)
Role-Based Session Management:

o When the user successfully logs in (either as admin or customer), the session stores the

username and customer/admin status:
Session(*'username™) = reader(*customer_name").ToString()
Session(*"customer_id") = reader("customer_id").ToString()
TEST CASE FOR TESTING SESSION MANAGEMENT:
Testing Secure Cookies:

e Step 1: Log in to the application using valid credentials.

e Step 2: Open your browser’s developer tools (right-click > Inspect > Application tab).

o Step 3: Look for the session cookie (ASP.NET_Sessionld) under the "Cookies™ section.

e What happens? The session cookie should have both the HttpOnly and Secure flags
enabled, ensuring that the cookie is not accessible via JavaScript and is sent only over
HTTPS.

pg. 11

& G 2% labsiad.somee.com i o - 3

o0 [All Bookmarks

“* ik [0 FElements Console Sources MNetwork >» o8 @ i x

html body d

Styles Computed Layout Eventlisteners DOM Breakpoints Properties >

Y Filter thov s +, @ [
lement.style {
{

¥

I (max-width: 768px) (index) :204
.container {

padding: » 15px;

b
.container { (index):34

max-width: 1200px;
mar » 0 auto;
paddine %

}

div {

display: block;

{ Console What'snew X Al assistance A b
@ What's new in DevTools 136

Hosted Windows Virtual Server. 2.5GHz CPU, 2GB RAM, 60GB SSD. Try it now for $1!
See the highlights from Chrome 136
Web hosting by Somee.com

CEZIE = ¢

ik [B CElements Console Sources Application > Q3 @& :
Application A C (Y Fitter 7 Only show cook
) Manifest Name Value DP.ESHSSPCEP
%4 Service workers ga GA1.1.18687 722)
8 Sstorage _ga.D10... GS2.1517462... ../ 2. 5. A
AspNet... CfDJSGHHYE... a../ S.1.v L A
Storage ASP.NET... 1q00zltcshS.. W./ S.4.v L A
» EB Local storage ASPSESS... HNMDFKABG... w../ S. 4 A
» BB Session storage ASPSESS... DPNLBEJBKIK.. w../ S.. 4. A
» BB Extension storage ASPSESS... LKINFHPAPG.. w../ S. 4 A
© IndexedDB ASPSESS... KAPDLPPABH... W../ S.. 4. A
ASPSESS... PKDNJJBBDL... w../ S.. 4. A

v @ Cookies
o ASPSESS... LNKDNJJBPB.. w./ S. 4 v A

ps:// absiad

b b Wi/ S.2)

B Private state tokens
8 Interest groups No cookie selected
» B Shared storage v

ct a cookie to preview its value

i Console What'snewX Al assistance &
@ What's new in DevTools 136

See all new features

Hosted Windows Virtual Server. 2.5GHz CPU, 2GB RAM, 60GB SSD. Try it now for $1!
Web hosting by Somee.com

Q Search

9:26 PM
5/13/2025

>
s
)

x ©

pg. 12

X ‘s [o Elements Console Sources Application >> ®s @& : X
Applicati... & C Y Filter =k X [J Only show cookies with an issue
D M... Name Value D.|P.|E.|S. H.|S5.|5.|P.|(C.|P.&
¢ _Bu AL e T T WY e I [= J Ivi.
fx Se..
_ga_D10VV... GS52.1.5174626060... ;S [2...]| 98 M...
8 st. AspNetCor... CfDJSGIjHYEQAZF... a.. / S.. 1.. L. M..
Storage ASP.NET Se... 1qg0ozl1csjh53yOrz... w.. / S.. 41 v v L. M..
» BB L ASPSESSIO... HNMDFKABGKKK... w.. / S.. 44 M...
0...
ASPSESSIO... DPNLBEJBKIKCOB... w... / S.. 44 M...
g g Se... ASPSESSIO... LKJNFHPAPGFCNI... w... / S.. 44 M...
» BB Bx ASPSESSIO... KAPDLPPABHDFB.. w../ S.. 44 M.. ¥
8 In Cookie Value [} Show URL-decoded
- @ Co... HNMDFKABGKKKKAKCDAHPOGFK
& h.
8 Ppri
@ Int
» B sh. «
Console What's new X Al assistance & X
A
P\ []

1 Testing Session Invalidation on Logout:
e Step 1: Log in to the application.
e Step 2: Log out by clicking the logout button.
o Step 3: After logout, try to access a restricted page.
o Expected Behavior: The user should be redirected to the login page, and any session
data (e.g., Session(*'username")) should be cleared.

« 2> C 25 labsiad.somee.com/new_app/AdminDashboard.aspx

pg. 13

Admin Dashboard

View All Customers

Manage Movies

Manage Subscriptions

Logout

* O 9 ®

[All Bookmarks

So, By implementing secure session management (HTTP-only and Secure cookies, session
timeouts, and proper invalidation on logout), I’ve enhanced the security of the application and
minimized the risk of session hijacking. Additionally, by hashing passwords, | have ensured that
sensitive data such as user credentials is protected even if the database is compromised.

pg. 14

