
 pg. 1

NAME: INAYAT ARSHAD

SUBMITTED TO: DR IRFAN HAMEED

IAD SEMESTER PROJECT

PROBLEM 3

 pg. 2

(Problem 3)

Develop test cases for all security features and prepare a report about testing security features.

(Ans)

The following test cases are used for the security features I have applied:

1)Https redirection
To enhance the security of my ASP.NET web application, I implemented HTTPS redirection to

ensure that all client-server communication is encrypted. Firstly , my site was not secured due to

http only , no SSL , the URL was http://labsiad.somee.com but after that I bought a free

certificate order from some ,

http://labsiad.somee.com/

 pg. 3

And then I was able to , use Https and system got secured , now my URL is

https://www.labsiad.somee.com/ and now on clicking the previous URL I get

 SSL (Secure Sockets Layer) provides a secure, encrypted connection between a user’s browser

and the web server, ensuring that all data transmitted—such as login credentials, personal details,

or payment information—is protected from interception or tampering by hackers. It prevents

man-in-the-middle attacks, ensures data integrity, and builds user trust by displaying the

padlock icon and "https://" in the address bar. Additionally, SSL is essential for SEO rankings,

as search engines like Google prioritize secure websites.

2) Secure Password Storage
When a user types a password like inayat123 during login:

1. Login.aspx.vb hashes that input using SHA-256.

2. The hashed version (e.g., 25f9e794323b453885f5181f1b624d0b) is compared with the

stored hashed password in the database.

3. If it matches, login is successful.

You just type the plain password (inayat123) as usual — no change in user behavior.

https://www.labsiad.somee.com/

 pg. 4

Database has hashed passwords like

2 files has been added

HashPasswords.aspx

<%@ Page Language="VB" AutoEventWireup="false" CodeFile="HashPasswords.aspx.vb"

Inherits="HashPasswords" %>

<!DOCTYPE html>

<html>

<head runat="server">

 <title>Hash Passwords Utility</title>

</head>

<body>

 <form id="form1" runat="server">

 <div>

 <asp:Label ID="lblStatus" runat="server" Text="Hashing passwords... Please

wait."></asp:Label>

 </div>

 </form>

</body>

</html>

HashPasswords.aspx.vb
Imports System

Imports System.Data.SqlClient

Imports System.Security.Cryptography

Imports System.Text

Partial Class HashPasswords

 Inherits System.Web.UI.Page

 pg. 5

 Dim connStr As String = "workstation id=movierentalsystem.mssql.somee.com;packet size=4096;user

id=inayat_arshad_SQLLogin_1;pwd=qhlgsg2nl9;data

source=movierentalsystem.mssql.somee.com;persist security info=False;initial

catalog=movierentalsystem;TrustServerCertificate=True"

 Protected Sub Page_Load(sender As Object, e As EventArgs) Handles Me.Load

 Try

 Dim customersUpdated As Integer = 0

 Using conn As New SqlConnection(connStr)

 conn.Open()

 ' Select all customers

 Dim selectCmd As New SqlCommand("SELECT customer_id, password FROM customer_t",

conn)

 Dim reader As SqlDataReader = selectCmd.ExecuteReader()

 Dim customersToUpdate As New List(Of KeyValuePair(Of Integer, String))()

 While reader.Read()

 Dim customerId As Integer = Convert.ToInt32(reader("customer_id"))

 Dim plainPassword As String = reader("password").ToString()

 ' Check if already hashed (hashes are usually 64 characters long in hex)

 If plainPassword.Length <> 64 Then

 Dim hashedPassword As String = HashPassword(plainPassword)

 customersToUpdate.Add(New KeyValuePair(Of Integer, String)(customerId,

hashedPassword))

 End If

 End While

 reader.Close()

 ' Update passwords

 For Each customer In customersToUpdate

 Dim updateCmd As New SqlCommand("UPDATE customer_t SET password = @hashed

WHERE customer_id = @id", conn)

 updateCmd.Parameters.AddWithValue("@hashed", customer.Value)

 updateCmd.Parameters.AddWithValue("@id", customer.Key)

 updateCmd.ExecuteNonQuery()

 customersUpdated += 1

 Next

 lblStatus.Text = "Passwords hashed successfully for {customersUpdated} customer(s). Please

delete this page now."

 End Using

 Catch ex As Exception

 lblStatus.Text = " Error: " & ex.Message

 End Try

 End Sub

 pg. 6

 Private Function HashPassword(password As String) As String

 Using sha256 As SHA256 = SHA256.Create()

 Dim bytes As Byte() = Encoding.UTF8.GetBytes(password)

 Dim hash As Byte() = sha256.ComputeHash(bytes)

 Dim sb As New StringBuilder()

 For Each b As Byte In hash

 sb.Append(b.ToString("x2"))

 Next

 Return sb.ToString()

 End Using

 End Function

End Class

 login.aspx.vb
Imports System

Imports System.Data.SqlClient

Imports System.Security.Cryptography

Imports System.Text

Partial Class Login

 Inherits System.Web.UI.Page

 Dim connStr As String = "workstation id=movierentalsystem.mssql.somee.com;packet size=4096;user

id=inayat_arshad_SQLLogin_1;pwd=qhlgsg2nl9;data

source=movierentalsystem.mssql.somee.com;persist security info=False;initial

catalog=movierentalsystem;TrustServerCertificate=True"

 Protected Sub btnLogin_Click(sender As Object, e As EventArgs)

 If String.IsNullOrWhiteSpace(txtUsername.Text) OrElse

String.IsNullOrWhiteSpace(txtPassword.Text) Then

 lblMessage.Text = "Username and Password are required."

 Return

 End If

 Dim hashedInputPassword As String = HashPassword(txtPassword.Text)

 Using conn As New SqlConnection(connStr)

 conn.Open()

 Dim cmd As New SqlCommand("SELECT customer_id, customer_name FROM customer_t

WHERE customer_name = @name AND password = @password", conn)

 cmd.Parameters.AddWithValue("@name", txtUsername.Text)

 cmd.Parameters.AddWithValue("@password", hashedInputPassword)

 Dim reader As SqlDataReader = cmd.ExecuteReader()

 If reader.Read() Then

 Session("username") = reader("customer_name").ToString()

 Session("customer_id") = reader("customer_id").ToString()

 Response.Redirect("dashboard.aspx")

 Else

 pg. 7

 lblMessage.Text = "Invalid username or password."

 End If

 reader.Close()

 End Using

 End Sub

 Private Function HashPassword(password As String) As String

 Using sha256 As SHA256 = SHA256.Create()

 Dim bytes As Byte() = Encoding.UTF8.GetBytes(password)

 Dim hash As Byte() = sha256.ComputeHash(bytes)

 Dim sb As New StringBuilder()

 For Each b As Byte In hash

 sb.Append(b.ToString("x2"))

 Next

 Return sb.ToString()

 End Using

 End Function

End Class

After adding HashPasswords.aspx ,I Deployed and visit

https://labsiad.somee.com/HashPasswords.aspx once, It will hash all non-hashed passwords in

the customer_t table. After confirming login works:

Delete the page immediately

Functionality:

 In my web application, I implemented password hashing to enhance the security of the login

system. Specifically, I used the SHA-256 hashing algorithm in VB.NET to hash the admin

password before verifying it during login.

This had the following functions and advantages:

• Prevented plain-text password storage: Instead of storing or comparing passwords in

plain text, I used a hashing function to transform the password into a fixed-length,

irreversible string.

• Improved security in case of data breaches: Even if someone gains unauthorized

access to the application or database, they won’t be able to see the actual password.

• Resisted reverse-engineering: The one-way nature of the SHA-256 algorithm ensures

that it's practically impossible to retrieve the original password from the hashed version.

• Protected against common attacks: Hashing helps defend against brute force and

rainbow table attacks, especially when used with additional techniques like salting

(which can be added later for even stronger protection).

By doing this, I ensured that sensitive login information, like admin credentials, is handled in a

secure and industry-standard way.

3) Role-Based Access Control (RBAC)
Purpose:

RBAC was implemented to ensure that users (Admin and Customers) can only access

functionality appropriate to their roles, thereby enforcing security, personalization, and access

management.
How I Implemented RBAC

 pg. 8

I implemented Role-Based Access Control (RBAC) by clearly separating the authentication

process and access logic for two types of users: Admin and Customer. Each role has a distinct

login system, session control, and access to role-specific pages.

On the welcome page, users are prompted to select their role:

• Clicking Admin redirects the user to AdminLogin.aspx

• Clicking Customer redirects the user to Login.aspx (customer login)

This initial choice ensures role-specific routing from the very beginning.

2. Admin Authentication and Access Control

a. AdminLogin.aspx.vb

• The admin credentials are hardcoded for simplicity (admin / admin123).

• The password is hashed using SHA-256 using a GetHashedPassword() function.

• Upon successful login, a session variable is set:

Session("admin") = "true"

• The admin is redirected to AdminDashboard.aspx.

b. AdminDashboard.aspx

Admin-only features:

o View all customers

o Manage movies

o Manage subscriptions

o Logout

• Access to AdminDashboard.aspx and its features is protected using a session check

If Session("admin") Is Nothing OrElse Session("admin") <> "true" Then

 Response.Redirect("AccessDenied.aspx")

End If

3. Customer Authentication and Access Control

a. Login.aspx.vb

• Customers enter their username and password.

• The password is hashed using SHA-256 and validated against the database (customer_t

table).

• Upon successful login:

Session("username") = reader("customer_name").ToString()

Session("customer_id") = reader("customer_id").ToString()

• The user is redirected to dashboard.aspx (customer dashboard).

b. CustomerDashboard.aspx

• Only customer features are shown:

o Browse movies

o Rent movies

o Review payment history

• Customer pages check for a valid session before allowing access:

If Session("customer_id") Is Nothing Then

 Response.Redirect("AccessDenied.aspx")

End If

 4. Role Isolation

• Admin and Customer dashboards are completely isolated in both logic and navigation.

 pg. 9

• Users cannot simply change the URL and access another role’s dashboard.

o For example, a customer trying to access AdminDashboard.aspx without the

correct session will be redirected.

• Logout pages clear session data to prevent reuse of old sessions.

Outcome

This role-based access system in my Movie Rental System:

• Prevents customers from accessing admin-only functionalities such as managing movies

or viewing all customers.

• Provides a personalized experience where admins can manage data and customers can

only browse, rent movies, and view their payment history.

• Keeps the application secure and organized by clearly separating admin operations from

customer activities, both in logic and page access.

4) SQL Injection Prevention
In the implementation of the login functionality, SQL Injection Prevention has been effectively

ensured using parameterized SQL queries. Rather than directly concatenating user inputs into

SQL queries, the system employs parameterized queries to safely pass user input as data, not

executable code. For example, in the btnLogin_Click event handler, the query to validate user

credentials is written as:
Imports System

Imports System.Data.SqlClient

Imports System.Security.Cryptography

Imports System.Text

Partial Class Login

 Inherits System.Web.UI.Page

 Dim connStr As String = "workstation id=movierentalsystem.mssql.somee.com;packet size=4096;user

id=inayat_arshad_SQLLogin_1;pwd=qhlgsg2nl9;data

source=movierentalsystem.mssql.somee.com;persist security info=False;initial

catalog=movierentalsystem;TrustServerCertificate=True"

 Protected Sub btnLogin_Click(sender As Object, e As EventArgs)

 If String.IsNullOrWhiteSpace(txtUsername.Text) OrElse

String.IsNullOrWhiteSpace(txtPassword.Text) Then

 lblMessage.Text = "Username and Password are required."

 Return

 End If

 Dim hashedInputPassword As String = HashPassword(txtPassword.Text)

 Using conn As New SqlConnection(connStr)

 conn.Open()

 Dim cmd As New SqlCommand("SELECT customer_id, customer_name FROM customer_t

WHERE customer_name = @name AND password = @password", conn)

 cmd.Parameters.AddWithValue("@name", txtUsername.Text)

 cmd.Parameters.AddWithValue("@password", hashedInputPassword)

 pg. 10

 Dim reader As SqlDataReader = cmd.ExecuteReader()

 If reader.Read() Then

 Session("username") = reader("customer_name").ToString()

 Session("customer_id") = reader("customer_id").ToString()

 Response.Redirect("dashboard.aspx")

 Else

 lblMessage.Text = "Invalid username or password."

 End If

 reader.Close()

 End Using

 End Sub

 Private Function HashPassword(password As String) As String

 Using sha256 As SHA256 = SHA256.Create()

 Dim bytes As Byte() = Encoding.UTF8.GetBytes(password)

 Dim hash As Byte() = sha256.ComputeHash(bytes)

 Dim sb As New StringBuilder()

 For Each b As Byte In hash

 sb.Append(b.ToString("x2"))

 Next

 Return sb.ToString()

 End Using

 End Function

End Class

Here, the user input for the username and password fields is bound to the SQL parameters

@name and @password, preventing any malicious SQL code from being injected. The

parameters are safely added to the SQL command using cmd.Parameters.AddWithValue(),

ensuring that the values are treated as data rather than part of the SQL syntax. This approach

eliminates the risk of SQL injection attacks, as user input cannot manipulate the query logic or

access unauthorized data. By adopting parameterized queries, the system robustly secures the

application from SQL injection vulnerabilities and ensures secure database interactions.

5) Session Management Implementation
Purpose:

The goal of session management is to ensure that users remain securely logged in during their

session and to prevent attackers from hijacking active sessions. Proper session management

includes using secure cookies, session timeouts, and proper session invalidation upon logout.

Setting Secure, HTTP-Only Cookies:

• After a successful login, the session is established, and the session cookie

(ASP.NET_SessionId) is set with two critical attributes:

o HttpOnly: Ensures that the cookie is not accessible via client-side JavaScript,

thus preventing cross-site scripting (XSS) attacks.

o Secure: Ensures that the cookie is only sent over HTTPS, preventing it from

being transmitted over insecure HTTP connections.

• This is implemented in the btnLogin_Click method in both AdminLogin.aspx.vb and

Login.aspx.vb files:

If Response.Cookies("ASP.NET_SessionId") IsNot Nothing Then

 pg. 11

 Response.Cookies("ASP.NET_SessionId").HttpOnly = True

 Response.Cookies("ASP.NET_SessionId").Secure = True

End If

Session Timeout:

• By default, ASP.NET session management has a built-in session timeout feature that

invalidates the session after a predefined period of inactivity. However, you can adjust

the timeout value in the Web.config file to suit your security needs. For example:

<configuration>

 <system.web>

 <sessionState timeout="20" /> <!-- Session timeout in minutes -->

 </system.web>

</configuration>

This ensures that if a user does not interact with the application for 20 minutes, the session will

be automatically invalidated.

Session Invalidation on Logout:

• When the user logs out, the session is invalidated using the Session.Abandon() method,

which clears the session data and prevents unauthorized access to sensitive information.

For example, in a logout page, i would implement:

Session.Abandon()

Response.Redirect("Login.aspx")

Role-Based Session Management:

• When the user successfully logs in (either as admin or customer), the session stores the

username and customer/admin status:

Session("username") = reader("customer_name").ToString()

Session("customer_id") = reader("customer_id").ToString()

TEST CASE FOR TESTING SESSION MANAGEMENT:

Testing Secure Cookies:

• Step 1: Log in to the application using valid credentials.

• Step 2: Open your browser’s developer tools (right-click > Inspect > Application tab).

• Step 3: Look for the session cookie (ASP.NET_SessionId) under the "Cookies" section.

• What happens? The session cookie should have both the HttpOnly and Secure flags

enabled, ensuring that the cookie is not accessible via JavaScript and is sent only over

HTTPS.

 pg. 12

 pg. 13

 Testing Session Invalidation on Logout:

• Step 1: Log in to the application.

• Step 2: Log out by clicking the logout button.

• Step 3: After logout, try to access a restricted page.

• Expected Behavior: The user should be redirected to the login page, and any session

data (e.g., Session("username")) should be cleared.

 pg. 14

So, By implementing secure session management (HTTP-only and Secure cookies, session

timeouts, and proper invalidation on logout), I’ve enhanced the security of the application and

minimized the risk of session hijacking. Additionally, by hashing passwords, I have ensured that

sensitive data such as user credentials is protected even if the database is compromised.

------------------------END--------------------------

